430 research outputs found

    Inversion of SAR data in active volcanic areas by optimization techniques

    Get PDF
    The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar) interferometry and an inversion approach formulated in terms of an optimization problem is proposed. Based on this inversion scheme, it is shown that the problem of inverting ground deformation data in terms of a single source, of Mogi or Okada type, is numerically well conditioned. In the paper, two case studies of inverting actual SAR data recorded on Mt Etna during eruptions occurring in 1998 and 2001 are investigated, showing the suitability of the proposed technique

    3D MODELING WITH PHOTOGRAMMETRY BY UAVS AND MODEL QUALITY VERIFICATION

    Get PDF
    This paper deals with a test lead by Geomatics laboratory (DICEAM, Mediterranea University of Reggio Calabria), concerning the application of UAV photogrammetry for survey, monitoring and checking. The study case relies with the surroundings of the Department of Agriculture Sciences. In the last years, such area was interested by landslides and survey activities carried out to take the phenomenon under control. For this purpose, a set of digital images were acquired through a UAV equipped with a digital camera and GPS. Successively, the processing for the production of a 3D georeferenced model was performed by using the commercial software Agisoft PhotoScan. Similarly, the use of a terrestrial laser scanning technique allowed to product dense cloud and 3D models of the same area. To assess the accuracy of the UAV-derived 3D models, a comparison between image and range-based methods was performed

    UAV AND COMPUTER VISION, DETECTION OF INFRASTRUCTURE LOSSES AND 3D MODELING

    Get PDF
    The degradation of buildings, or rather the decline of their initial performances following external agents both natural (cold-thaw, earthquake, salt, etc.) and artificial (industrial field, urban setting, etc.), in the years lead to the necessity of developing Non-Destructive Testing (NDT) intended to give useful information for an explanation of a potential deterioration without damaging the state of buildings. An accurate examination of damages, of the repeat of cracks in condition of similar stress, indicate the existence of principles that control the creation of these events. There is no doubt that a precise visual analysis is at the bottom of a correct evaluation of the building. This paper deals with the creation of 3D models based on the capture of digital images, through autopilot flight UAV, for civil buildings situated on the area of Reggio Calabria. The following elaboration is done thanks to the use of commercial software, based on specific algorithms of the Structure from Motion (SfM) technique. SfM represents an important progress in the aerial and terrestrial survey field obtaining results, in terms of time and quality, comparable to those achievable through more traditional data capture methodologies

    Modelling ground deformations in volcanic areas by using SAR interferograms

    Get PDF
    The inversion problem dealt with is the identification of the parameters of a magma-filled dike which causes observable changes in ground deformation data. It is supposed that ground deformation data are measured by using the SAR (Synthetic Aperture Radar) Interferometry technique. The inversion approach, which is carried out by a systematic search technique based on the Simulated Annealing (SA) optimization algorithm, guarantees a high degree of accuracy. The results given in the paper are supported by experiments carried out using an interactive software tool developed ad hoc, which allows both direct and inverse modeling of SAR interferometric data related to the opening of a crack at the beginning and throughout a volcanic activity episode

    Triggering mechanisms of static stress on Mount Etna volcano. An application of the boundary element method

    Get PDF
    In the last thirty years, numerous eruptions and associated deformation episodes have occurred at Mt. Etna volcano. Datasets recorded by continuous monitoring of these episodes provide a unique opportunity to study the relationships between volcanism, flank instability and faulting activity. We have investigated the stress triggering mechanism between magmatic reservoir inflation, intrusive episodes and flank dynamics. Using three-dimensional numerical Boundary Elements Models we simulated volcano-tectonic events and calculated Coulomb stress changes. Using this modeling approach, we analyzed four realistic scenarios that are representative of recent kinematics occurring at Mt. Etna. The main results obtained highlight how (1) the inflation of a deep spherical magma source transfers elastic stress to a sliding plane and faults (2) the opening of the NE Rift and S Rift (to a less efficient extent) favor movements of the instable sector and may encourage seismicity on the eastern flank faults, and (3) flank instability may trigger the uprising of magma. Defining the effects of the elastic stress transfer and relationships among the main forces acting on volcano, may help to forecast possible eruption scenarios during future episodes of unrest at Mount Etna and provide an important tool for decision makers during volcanic emergencies involving the highly populated areas of the volcano

    LASER SCANNER TECHNOLOGY, GROUND-PENETRATING RADAR AND AUGMENTED REALITY FOR THE SURVEY AND RECOVERY OF ARTISTIC, ARCHAEOLOGICAL AND CULTURAL HERITAGE

    Get PDF
    In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets

    fem and ann combined approach for predicting pressure source parameters at etna volcano

    Get PDF
    Abstract. A hybrid approach for forward and inverse geophysical modeling, based on Artificial Neural Networks (ANN) and Finite Element Method (FEM), is proposed in order to properly identify the parameters of volcanic pressure sources from geophysical observations at ground surface. The neural network is trained and tested with a set of patterns obtained by the solutions of numerical models based on FEM. The geophysical changes caused by magmatic pressure sources were computed developing a 3-D FEM model with the aim to include the effects of topography and medium heterogeneities at Etna volcano. ANNs are used to interpolate the complex non linear relation between geophysical observations and source parameters both for forward and inverse modeling. The results show that the combination of neural networks and FEM is a powerful tool for a straightforward and accurate estimation of source parameters in volcanic regions

    Denoising gravity and geomagnetic signals from Etna volcano (Italy)

    Get PDF
    Multivariate methods were applied to denoise the gravity and geomagnetic signals continuously recorded by the permanent monitoring networks on the Etna volcano. Gravity and geomagnetic signals observed in volcanic areas are severely influenced by meteorological variables (i.e. pressure, temperature and humidity), whose disturbances can make the detection of volcanic source effects more difficult. For volcano monitoring it is necessary, therefore, to reduce the effects of these perturbations. To date filtering noise is a very complex problem since the spectrum of each noise component has wide intervals of superposition and, some times, traditional filtering techniques provide unsatisfactory results. We propose the application of two different approaches, the adaptive neuro-fuzzy inference system (ANFIS) and the Independent Component Analysis (ICA) to remove noise effects from gravity and geomagnetic time series. Results suggest a good efficiency of the two proposed approaches since they are capable of finding and effectively representing the underlying factors or sources, and allow local features of the signal to be detected

    FEM and ANN combined approach for predicting pressure source

    Get PDF
    A hybrid approach for forward and inverse geophysical modeling, based on Artificial Neural Networks (ANN) and Finite Element Method (FEM), is proposed in order to properly identify the parameters of volcanic pressure sources from geophysical observations at ground surface. The neural network is trained and tested with a set of patterns obtained by the solutions of numerical models based on FEM. The geophysical changes caused by magmatic pressure sources were computed developing a 3-D FEM model with the aim to include the effects of topography and medium heterogeneities at Etna volcano. ANNs are used to interpolate the complex non linear relation between geophysical observations and source parameters both for forward and inverse modeling. The results show that the combination of neural networks and FEM is a powerful tool for a straightforward and accurate estimation of source parameters in volcanic regions

    Technical Solutions and Standards Upgrade for Photovoltaic Systems Operated over 1500 Vdc

    Get PDF
    This paper deals with photovoltaic (PV) systems with operating voltage increased over the value 1500 V in DC, which represents the limit of the current solutions and the actual standard for the PV plant at utility-scale level. The increase of the DC voltage is aimed at reducing the cable energy losses, the number of components and to optimise the layout of the plants, increasing the competitiveness of Medium Voltage PV (MVPV) solutions with rated powers of hundreds of megawatt. The analysis carried out has identified the possible solutions to adopt in order to reach this target and has remarked that today the International Standards are not covering all the aspects of the technical solutions to be introduced in a MVPV plant. This paper indicates the key issues to be addressed by new Standards on some components in order to enable the deployment of MVPV solutions. Finally, the characteristics of an installation at 1500 V DC and some results of tests carried out on the isolation system of a 1500 V PV plant are discussed
    corecore